One coffee costs $£ x$ and one muffin costs $£ y$.
(a) With £10, Pippa could buy a maximum of 9 coffees, so $9 x<10$.

The line $9 x=10$ has been drawn for you.
Indicate clearly, by shading, the region satisfying the inequality $9 x<10$. Label this region R.

(b) With $£ 10$, Pippa could also buy 5 coffees and 5 muffins, so $5 x+5 y \leqslant 10$.

Indicate clearly, by shading, the region satisfying the inequality $5 x+5 y \leqslant 10$.
Label this region T .
(c) At the event, muffins and coffee are each priced in multiples of 50 p.

A coffee costs more than a muffin.
Represent this information on the diagram.
Using your diagram, write down the cost of one coffee and one muffin.
(c) One coffee costs $£$ \qquad
One muffin costs £

2 (a) On the grid, draw the line $3 x+4 y=12$.

(b) On the grid, indicate clearly the region R which satisfies all the following inequalities.

$$
\begin{aligned}
3 x+4 y & <12 \\
x & >1 \\
y & >0
\end{aligned}
$$

(c) Write down the integer values of x and y that satisfy all three inequalities.
(c) $x=$ \qquad $y=$

3 Write down the inequality represented by each of these shaded regions.
(a)

(a)
(b)

(b)
(c)

(c)

4 The entry fee to a stately home is $£ 6$ for an adult and $£ 5$ for a child.
Kushala was working at the till and noticed that she had taken more than £300 in entry fees one morning.

Let x be the number of adult visitors and y the number of child visitors.
(a) On the grid, represent the inequality $6 x+5 y>300$.

Shade the area not required.

Kushala also noticed

- the number of child visitors was more than twice the number of adult visitors,
- there were less than 70 child visitors.
(b) (i) Write down two inequalities in x and y to represent this information.

(b)(i)

\qquad
(ii) Represent your inequalities on the grid. Shade the area not required.
(c) Kushala's manager thinks they had 30 adult visitors and 50 child visitors that morning.
(i) Explain why the manager must be wrong.
\qquad
\qquad
(ii) Write down one possible pair of values for the number of adult visitors (x) and child visitors (y) that fits all the conditions.
(c)(ii) \qquad adult visitors
\qquad child visitors [

